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ABSTRACT 

An embedding of a multi-graph in a manifold is a closed 2-cell embedding 

provided the closures of the f a c e s  a r e  all closed 2-cells. In this paper w e  

characterized the projective planar multi-graphs that have closed 2-cell 

embeddings in the projective plane. 

1. In troduct ion  

The open faces of a graph G embedded in a surface S are the connected com- 

ponents of S - G. The closed faces are the closures of the open faces. Three 

important classes of embedding of graphs are the 2-cell embeddings  in which 

all open faces are open 2-cells, closed 2-cell embeddings  in which each closed 

face is a closed 2-cell, and the polyhedra l  embeddings  in which all closed 

faces are closed 2-cells, each vertex is at least 3-valent and intersection of any 

two closed faces is connected. 

The 2-cell embeddings are thus those where no face is multiply connected, the 

closed 2-cell embedding are those where no closed face is multiply connected and 

the polyhedral embeddings are those where vertices have valence at least three 

and no two closed faces have a multiply connected union. 

We shall consider embeddings in the projective plane. The projective planar 

graphs (i.e. those embeddable in the projective plane) having a 2-cell embedding 

are easily characterized as the projective planar graphs that contain a circuit. 
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In [3] the author finds a relatively simple characterization of the projective 

planar graphs that have a polyhedral embedding. Surprisingly, the intermediate 

case - -  the dosed 2-ceU embeddings - -  appears to be much more difficult to 

characterize. In this paper we give a characterizaton of the projective planar 

graphs and multi-graphs that have closed 2-cell embeddings in the projective 

plane. 

2. Bas ic  de f in i t ions  a n d  n o t a t i o n  

The g r a p h s  in this paper are without loops or multiple edges. When multiple 

edges are to be allowed we use the term mu l t i - g r ap h .  We shall use H to denote 

the plane and II* to denote the projective plane. When referring the faces of a 

graph we shall use the term face for dosed face and also for the circuit bounding 

it. It will be dear  from the context which meaning we use. When referring to 

faces we will mean "open face" only when "open" is explicitly stated. 

We shall use the term C T C - e m b e d d i n g  for dosed 2-cell embedding. Note 

that in a CTC-embedding the boundary of each face is a simple circuit in the 

graph, while in a 2-ce11 embedding each dosed face is toplogically a polygon with 

identifications of vertices and edges. 

If a graph G is embedded in a subset of II* that is a 2-cell we say that the 

embedding of G in II* is p l ana r ,  otherwise the embedding is n o n p l a n a r .  In 

particular, a circuit in a graph G embedded in II* is a p l a n a r  c i rcu i t  if it is 

homotopically trivial, otherwise it is a n o n p l a n a r  c i rcui t .  

By a p a t h  in a graph we shall always mean a non-selfintersecting path. If P 

is a path in G then the set consisting of P minus its endpoints is the o p e n  p a t h  

P.  

A graph G is n - c o n n e c t e d  provided G has at least n + 1 vertices and the 

graph cannot be separated by removing fewer than n vertices. 

If G is a multi-graph then the graph G' formed by removing all but one edge 

of each set of multiple edges is called the u n d e r l y i n g  g r a p h  of G. If H is a 

subgraph of a graph G then the c o m p l e m e n t / ~  of H in G is the graph consisting 

of all eges in G but not in / i t  and all vertices of these edges. The ve r t i ce s  o f  

a t t a c h m e n t  of H are the vertices in H N/~. 

If G is a 2-connected graph and removing vertices a and b separates G then 

each connected component of G - {a, b} is called a 2 - c o m p o n e n t  of G. If C is a 

2-component of G - {a, b} then the subgraph of G consisting of C and all edges 
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from C to a and b is a 2-piece of G. A 2-piece of G is m i n i m a l  if it does not 

properly contain any 2-piece of G. Note that if A is a 2-piece of G there will be 

another 2-piece in A with the same vertices of attachments as A. 

For any graph G embedded in a surface, if we remove an edge e = xy and add 

a 2-piece A such that z and y become the vertices of attachment of A, and A is 

planar embedded in the face of G - e that contains e, we say that the new graph 

is obtained from G by r ep l ac ing  e by  a 2-piece.  We say G1 is obtained from 

G by r ep l ac ing  edges  provided G = G1 or G1 is obtained from G by repeating 

application of the above process. 

If G is a graph embedded in a surface and x is a vertex of G then the s t a r  of 

x, denoted star(x) is the union of the closed faces meeting x. The a n t i s t a r  of 

x, denoted ast(z) is the union of the closed faces missing x, and the link of x, 

denoted link(x) is the intersection of the star and antistar of x. 

3. Preliminary lemmas 

The planar 3-connected graphs are isomorphic to the graphs formed by the ver- 

tices and edges of convex 3-dimensional polytopes with the faces of the polytope 

corresponding to the faces of the graph [6]. Well-known consequences of this are 

given in the following: 

LEMMA 1: I f  G is a planar 3-connected graph then 

(1) The antistar of each vertex is a 2-ce11 

(2) The link of each vertex is a simple circuit 

(3) I f  two faces meet on vertices z and y then zy  is an edge of both faces. 

We say that a graph G1 embedded in a surface S is obtained from a graph G 

in S by face sp l i t t i ng  provided G1 is obtained by adding an edge e to G such 

that e lies in a closed face of G and the vertices of e are either vertices of G or 

points in the relative interiors of edges of G. 

We shall use the following theorem of the author [1]. 

LEMMA 2: The dosed 2-ce11 embeddings in II* can be generated from the era- 

beddings ~1 and G2 (see Fig. 1) by face splitting. 

Another lemma of the author [2] we shall need is 

LEMMA 3: Let G be a graph embedded in a dosed cell bounded by a circuit C 

of G. Let C be the union of four paths F1, . . .  , r4  such that F i NFi+I is a vertex 
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and F4 N F1 is a vertex (we do not rule out some of the Fi's being single vertices). 

If no/'ace of G meets both F1 and F3 then there is a path P joining a vertex of 
the open path F2 to a vertex of the open path F4 such that P meets C only at 
its endpoints. 

1 2 1 2 

l e 3 

3 

2 1 

Fig. 1 

Finally we shall use the following theorem of Tutte [5]. 

3 

LEMMA 4: For any planar 3-connected graph G, the faces of G are the nonsep- 
arating circuits. 

Here, a circuit is n o n s e p a r a t i n g  provided the (topological) complement of 

the circuit in G is connected. So, for example, a nonseparating circuit cannot 

intersect an edge on just two vertices. 

A 3-cha in  in a planar graph G is a set of three faces F1, F2 and Fs such 

that each two faces meet. If no vertex belongs to all three faces then the chain 

is non t r iv ia l .  When G is 3-connected and the chain is nontrivial, a 3-chain is 

s imple  provided the intersection of each two faces is a vertex or an edge, it is 

p u r e  if each two faces meet on one vertex. When G is 3-connected and the 3- 

chain is nontrivial the complement of F1 UF2 UFs in 1I will be two open connected 

sets, one bounded and one unbounded. These two sets will be called the reg ions  

o f  t h e  3-chain.  The boundary of each region will be the union of three paths 

one on each of F1,F2 and F3. A t r i a d  is a subgraph of G consisting of a vertex x 

in one of the regions of the 3-chain together with three paths, each joining x to 

one of the three open paths on the boundary of the region containing z. If there 
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is a triad in each of the two regions of the 3-chain we say that the 3-chain has a 

t r i a d  pa ir .  

LEMMA 5: If  G has a closed 2-celi embedding in 1I* then G is 2-connected. 

Proof." Clearly G is connected. Since each face is bounded by a simple circuit, 

the link of any vertex is connected. Suppose removing a vertex x disconnects G. 

Since link(x) is connected, one component, say C1 of G - x misses link(z). Now 

however, since x is joined only to link(z), C1 is a component of G and G is not 

connected, a contradiction. | 

LEMMA 6: Let G be a 2-connected graph embedded in II*. Let H be a subgraph 

of G vchose induced embedding in II* is a CTC-embedding. Then G is a CTC- 

embedding. 

Proof." If any open face F of G is multiply connected, then since F lies in a 

face of H,  F will separate connected components of G, a contradiction. Thus the 

embedding is a 2-cell embedding. It now follows that topologically, the dosed 

faces are polygons with possible identifications of vertices and edges. If there 

are any identifications of vertices of a face F then in F there is a simple closed 

curve meeting the boundary of F at an identified vertex x of F and separating 

the boundary of F.  Thus removing x separates G, a contradicion. Thus all faces 

are closed 2-cells and G is CTC-embedded in II*. | 

4. E m b e d d i n g  p l a n a r  g r a p h s  in II* 

THEOREM 1: IT G is a planax 2-connected graph with a nontrivial simple 3-chain 

without a triad pair then G has a CTC-embedding in II*. 

Proof." First we show that G embeds in H*, then we prove that it is a CTC- 

embedding. Let F1, F2 and F3 be the faces of the 3-chain. We shall treat the 

case where each two faces of the chain intersect on a single vertex. The other 

cases are similar. 

Figure 2 shows the 3-chain and Figure 3 shows how we will embed the vertices 

and edges of the 3-chain in II*. We shall assume that the region A in Figure 

2 is a region without a triad. The region of the planar embedding bounded by 

P4 UPs LJ P6 can be embedded in the cell in II* bounded by/)4  t_J Ps UPs- We 

embed the subgraph S of G - (F1 U F~ U Fz) that lies in A as follows. 
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P5 

Fig. 2 

2 

\ / c  

Fig. 3 

Let z be a vertex of S. We shall say that x c o n n e c t s  t o  Pi provided there is 

a path  in S from x to a vertex of the open path Pi. 

Let G1 be a maximal subgraph of S such that no vertex of G1 connects to P1. 

Let G2 be a maximal subgraph of S - G1 such that no vertex of G2 connects to 

/>2 and let Gs be a maximal subgraph of S - (G1 tJ G2) such that no vertex of 

Gs connects to P3- Clearly we can embed each Gi in region -~i (see Fig. 2). We 

need to show that G1 U G2 U Gs = S. 

Suppose x is a vertex of S not in G1 U G2 U Gs then x connects to the open 

paths P1,P2 and Ps and there is a triad in region A, a contradiction. 

Suppose c is an edge of S not in G1 U G2 U Ga. The edge c cannot join vertices 

of two different Gi's (for example, if it joined a vertex of G1 to a vertex of Gs 

then every vertex of G1 connects to P1, a contradiction). By maximality of Gi, 
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e doesn't  join two vertices of Gi. By maximality, e doesn't join any Gi to a path  

Pj for j ~ i. By the definition of the Gi's, e doesn't join any Gi to the open path 

Pi. By maximality, e does not join a Gi to a,b or c. Finally, if e joins two Pi's 

then it is in one of the Gi's by their definition. Thus G1 U G2 U Ga = S and we 

have embedded G in II*. 

We now observe that our embedding of F1 O F2 U Fa in II* is a closed 2-cell 

embedding and thus by Lemma 6 we have a CTC-embedding of G. | 

LEMMA 7: Let G be a planar 3-connected graph. If F1,F~ and Fs form a non- 

trivied 3-chain with a triad pair then at least one of FI, F2, or Fs is a planar 

circuit in any embedding of G in II*. 

Proof." We first treat the case where the 3-chain is pure. Figure 4 shows the 

embedding of F1 tA F2 tA Fs where each is a nonplanar circuit. One of the triads 

will be in R1 but the other must be in R2,Rs or R4. This however is impossible, 

for example if the triad is in R2 it can be connected to the open paths el and e2 

but not the open path es. 

1 2 

3 

Fig. 4 

If any pairs of the Fi's meet on edges we take the embedding in II* and shrink 

the edges of intersection to vertices, giving us case I. (Note that since G is 3- 

connected two faces of the chain can meet only on one vertex or edge.) | 

LEMMA 8: If G is a planar 3-connected graph in which there are four faces 

F1,F2,F3 and F4 such that each three meet at a vertex, then G is K4 the complete 

graph on four vertices. 
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Proo/: Let v~ be the vertex in N F~. Then by Lemma 1 each two vertices v~ 

and vk are joined by the edge e~,k = j ~ F j .  Thus G contains K, .  But now 

each Fi contains three of the edges ej,k and these three edges form a face of the 

embedding of / (4  thus Fi is a face of the subgraph isomorphic to K4 (for each i). 

It follows that  G = K4. | 

We shall say that  a planar graph is I I * - C T C - e m b e d d a b l e  provided it has 

CTC-embedding in l-I*. 

THEOREM 2: The planar 3-connected II*-CTC-embeddable graphs are K4 and 

the planar 3-connected graphs with nontrivial 3-chains without triad pairs. 

Proof: The graph Q~ in Fig. 1 is a CTC embedding of K4 in II*. Theorem 1 

gives the embeddings of the others. 

To see the necessity of the conditions, let G be a planar 3-connected II*-CTC- 

embeddable graph. Let S be the set of faces of the embedding of G in II that  are 

not faces in II*. Since any planar circuit in II* that  is not a face will separate 

the graph and since faces in II are nonseparating, we see that  all faces in S are 

nonplanar circuits in l-I*. It follows that  each two faces in S have a vertex in 

common. 

If S contains at least four faces then each three meet at a vertex, thus G -- K4 

and we are done. Thus either G contains three faces not meeting at one vertex or 

all faces in S meet at a vertex x. In the first case the three faces form a nontrivial 

3-chain. 

In the second case the antistar of x consists of faces in 1I that  are faces in II*, 

and the antistar of x in H is embedded as a cell in II*. In the complement of 

ast(x) in II* we have the vertex x and edges from x to link(x). It is easily seen 

that  no mat te r  how x is joined to link(x) there will be a face meeting x that  is 

not a closed 2-cell. 

Since the nontrivial 3-chain we have obtained in this case consists of faces that  

are not planar circuits in II*, Lemma 7 implies that  the 3-chain does not have a 

triad pair. | 

THEOREM 3: A planar 3-connected multigraph G is II*-CTC-embeddable if and 

only if the underlying graph G ~ is II*-CTC-embeddable. 

Proof: The sufficiency of H*-CTC-embeddabil i ty of the underlying graph is 

obvious. Suppose G is II*-CTC-embeddable.  If el, e2 is a pair of edges with 
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endpoints x and y in the embedding in II we shall show that  removing either cl 

or e2 creates another CTC-embedding. 

CASE I: el U e2 is a planar circuit. In this case since one face, F1, meeting el 

lies inside c1 U e2 and the other, F2, lies outside Cl U e2, F1 U F2 cannot have a 

multiply connected union and we may remove el. 

CASE II: No pair of multiple edges forms a planar circuit but  cl U e2 is a 

nonplanar circuit. Suppose we cannot remove el and thus the faces, F1 and F2, 

containing el have a multiply connected union. Because of edge e2 making a 

nonplanar circuit with cl,  F1 tA F2 cannot lie in a subset of l'I* that  is a cell. It 

follows that  F1 tJ F2 contains a simple close curve I'1 that  is not contractible in 

H*. Similarly if we cannot remove e2 then the union of the two faces, F3 and Fd, 

containing c2 contains a simple dosed curve P2 that  is not contractible in 1I*. 

Now r l  and F2 must meet at a point p which lies in F1,F2,F3 and F4. Since G is 

3-connected and has no multiple edges forming planar circuits, we have that  F1 

and F3 meet on an edge, say xp. Now Fz and F3 meet on yp, FI and F4 meet on 

yp and F2 and F4 meet on xp. Now the entire graph consists of the three vertices 

x,y,p and the double edges xp,yp, and xy. This contradicts the 3-connectedness 

of G since G does not have at least four vertices. 

It follows that  we may remove either el or e2. By continuing to remove such 

edges we eventually arrive at a II*-CTC-embedding of G s. | 

THEOREM 4: If G is a 2-connected planar II*-CTC-embeddable multi-graph then 

G has a pure  3-chain, without a triad pair in an embedding in II or G is obtained 

from a II*-CTC-embeddable &connected multi-graph by replacement o[ edges. 

Proof: By a theorem of the author [1] the CTC-embeddings in II* can be gen- 

erated by face splitting from the two graphs ~1 and ~2 embedded as shown in 

Fig. 1. 

CASE I: We can generate G from ~1. 

In the planar embedding of G1, el and e2 bound a face FI,  e3 and e4 bound 

a face Fz and e5 and e~ bound a face F3. When we split faces to construct G, 

each of the edges ei becomes a pa th  Ei. From the embedding of G1 in H* we see 

that  it is impossible to have a pa th  from the open pa th  E1 to the open pa th  E2 

missing the other Ei's. Thus by Lemma 3, a face F~ lying in F1 meets a and b. 

Similarly a face F~ in F2 meets b and c and a face F~ in Fa, meets c and a. These 

three faces form a pure nontrivial 3-chain in G. 
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Any triad pair for F~,F~, and F~ would have to be a triad pair for F1, F2 and 

Fa but  such a triad pair cannot exist for the embedding of G1 in II*. 

CASE II: We generate G from ~2. We prove this case by induction on the 

number of edges of G starting the induction with G = ~2. 

Now suppose G # ~2. If G is 3-connected then there is nothing to prove thus 

we assume G is 2- but not 3-connected. 

Splitting faces of ~2 results in possible vertices being added to the edges of ~2 

thus in G there is subgraph H consisting of the edges of ~2 with possible vertices 

added. We separate G by removing two vertices x and V. If some 2-component 

of G contains H then some other 2-component can be chosen not containing H.  

Let A be a 2-piece obtained from a 2-component not containing H. 

One may easily check that if we choose two vertices of H that do not lie on one 

of the original edges of ~2 then we cannot separate these two vertices from any 

other vertex of H by removing fewer than three vertices of H. Thus if A - {z, V} 

contains vertices of H they all lie on one edge of ~2. Suppose A - {x, V} contains 

vertices of H lying on an edge e of ~2 (see Fig. 5). It is also easily seen that 

vertices on e cannot be separated from other vertices of H by remo'zing fewer 

than three vertices unless two vertices on e axe removed. It follows that  the 

vertices of attachments of A are on e. 

Fig. 5 

We may now choose neighborhoods N1 ,N2 and Na of edges el, e2 and ea that  

miss A as shown in Fig. 5. Now A lies in the region F1 U F2 - (N1 U N2 U Na). 

Thus A lies in a closed 2-cell E in II*. Since A is a connected graph lying in E 
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and meeting x and y we can contract A to an edge joining x and y. Since the 

contraction can be done in the closed cell E,  only faces lying in E could have 

their topological type changed. 

We claim that  the graph G1 produced by the contraction is CTC-embedded.  

If a face F is multiply connected after the contraction then it must meet A on at 

least two vertices and if it does not meet A on a vertex other than x or y then it 

doesn' t  become multiply connected. Let z be a vertex of F N A that  is not x or 

y. 

If {x, y} n F = 0 then F is contracted to a point. If  {x, y} n F = x or y then 

F will be contracted to x or y. If {x, y} n F = {x, y} then the pa th  F from x to 

y along F containing z contracts to the edge xy, thus F remains a cell if F - F 

misses A. If F - F meets A then F contracts to xy. Thus F does not become 

multiply connected. 

Now by induction, G1 has a pure nontrivial 3-chain Fa,F4,Fs or G2 is obtained 

from a I I*-CTC-embeddable  3-connected multi-graph by replacing edges. In the 

second case G is also of the desired type. 

In the first case, replacing the edge xy by a 2-piece meeting x and y in II does 

not change the vertices of intersection of the faces F3,F4 and F5 in H, thus G has 

a nontrivial pure 3-chain. Clearly replacing the edge xy by a 2-piece does not 

create a tr iad pair for Fa,F4 and Fs. 

If A - {x, y} does not meet H then A lies in one face of H in l'I* and the above 

argument about  contradicting A to an edge holds. I 

The previous Theorems give us the following characterization for planar graphs. 

TItEOREM 5: A planar multi-graph is II*-CTC-embeddable if and only if it is 

2-connected and 

(1) has a pure 3-chain without a triad pair, or 

(2) is obtained from a multi graph, whose underlying graph is K4, by replacing 

edges, or 

(3) is obtained from a 3-connected multi-graph with a nontrivlal 3-chain with- 

out a triad pair, by replacing edges. 

5. E m b e d d i n g  nonplanar  graphs in H* 

We now turn to the nonplanar II*-CTC-embeddable graphs. 
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By a famous theorem of Kuratowski [4] every nonplanar graph contains a 

refinement of K5 or the complete bipartite graph Ka,a. Fig. 6 shows the two 

embeddings of/(5 and the only embedding of Ka,a in II*. Since there are CTC- 

embeddings, by Lemma 6 we have 

THEOREM 6: Every embedding of a 2-connected nonplanar multi-graph in 1I* is 
a CTC-embedding. 

a b 

e c~e d 

d 

b a 

K3,3 K4 

Fig. 6 
This completes the characterization of multi-graphs with closed 2-ceU embed- 

dings in II*. 
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